Publications

Publications pertinent to our current work.

(* indicates system of known or potential atmospheric interest.)

 

Review articles

Carboxylic Sulfuric Anhydrides

Hydrogen Bonding & Proton Transfer

  • Reynolds, A.J.; Leopold, K.R., "Partial Proton Transfer in the Gas Phase: A Spectroscopic and Computational Analysis of the Trifluoroacetic Acid  Trimethylamine Complex", J. Phys. Chem A, in press.
  • Huff, A.K.; Love, N.; Leopold, K.R., Microwave Study of Triflic Acid Hydrates: Evidence for the Transition from Hydrogen-Bonded Clusters to a Microsolvated Ion Pair, J. Phys. Chem. A 2021, 125, 8033-8046. https://pubs.acs.org/doi/10.1021/acs.jpca.1c06815
  • Love, N.; Huff, A.K.; Leopold, K.R., Proton Transfer in a Bare Superacid-Amine Complex: A Microwave and Computational Study of Trimethylammonium Triflate, J. Phys. Chem. A 2021, 125, 5061-5068. https://pubs.acs.org/doi/10.1021/acs.jpca.1c03345
  • *Mackenzie, R.B.; Dewberry, C.T.; Leopold, K.R., The Trimethylamine – Formic Acid Complex: Microwave Characterization of a Prototype for Potential Precursors to Atmospheric Aerosol, J. Phys. Chem. A 2016, 120, 2268-2273. https://pubs.acs.org/doi/10.1021/acs.jpca.6b01500
  • Mackenzie, R. B.; Dewberry, C. T.; Leopold, K. R., The Formic Acid - Nitric Acid Complex: Microwave Spectrum, Structure and Proton Transfer, J. Phys. Chem. A. 2014, 118, 7975-7985. https://pubs.acs.org/doi/10.1021/jp507060w
  • Sedo, G.; Leopold, K. R., Partial Proton Transfer in a Molecular Complex: Assessments From Both the Donor and Acceptor Points of View, J. Phys. Chem. A 2011, 115, 1787–1794. https://pubs.acs.org/doi/full/10.1021/jp108851t
  • *Sedo, G.; Doran, J. L.; Leopold, K. R., Partial Proton Transfer in the Nitric Acid Trihydrate Complex. J. Phys. Chem. A 2009, 113, 11301–11310. https://pubs.acs.org/doi/full/10.1021/jp9063033
  • *Craddock, M. B.; Brauer, C. S.; Leopold, K. R., Microwave Spectrum, Structure, and Internal Dynamics of the Nitric Acid Dihydrate Complex, J. Phys. Chem. A 2008, 112, 488–496. https://pubs.acs.org/doi/10.1021/jp075789f
  • *Brauer, C. S.; Sedo, G.; Leopold, K. R., Dipole Moment of the H2SO4-H2O Complex. Geophys. Res. Lett. 2006, 33, L23805. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2006GL028110
  • Brauer, C. S.; Craddock, M. B.; Kilian, J.; Grumstrup, E. M.; Orilall, M. C.; Mo, Y.; Gao, J.; Leopold, K.R. Amine-Hydrogen Halide Complexes: Experimental Electric Dipole Moments and a Theoretical Decomposition of Dipole Moments and Binding Energies. J. Phys. Chem. A 2006, 110, 10025–10034. https://pubs.acs.org/doi/10.1021/jp062101a
  • Hunt, S.W.; Higgins, K.J.; Craddock, M.B.; Brauer, C.S.; Leopold, K.R., Influence of a Polar Near-Neighbor on Incipient Proton Transfer in a Strongly Hydrogen Bonded Complex. J. Am. Chem. Soc. 2003, 125, 13850-13860. https://pubs.acs.org/doi/10.1021/ja030435x
  • *Fiacco, D.L.; Hunt, S.W.; Leopold, K.R., Microwave Investigation of Sulfuric Acid Monohydrate. J. Am. Chem. Soc. 2001, 105, 4504-4511. https://pubs.acs.org/doi/10.1021/ja012724w
  • *Ott, M.E.; Leopold, K.R., A Microwave Study of the Ammonia – Nitric Acid Complex. J. Phys. Chem. A 1999, 103, 1322-1328. https://pubs.acs.org/doi/10.1021/jp9841891
  • *Canagaratna, M.; Ott, M.E.; Leopold, K.R., The Nitric Acid – Water Complex: Microwave Spectrum, Structure, and Tunneling, J. Phys. Chem. A 1998, 102, 1489-1497. https://pubs.acs.org/doi/10.1021/jp980033p

Experimental Methods and Data Analysis

Partially Bonded Molecules

Electronic Structure

  • Dewberry, C. T.; Huff, A. K.; Mackenzie, R. B.; Leopold, K. R., Microwave Spectrum, van der Waals Bond Length, and 131Xe Quadrupole Coupling Constant of Xe-SO3J. Mol. Spec., 2014, 304, 43-46. https://www.sciencedirect.com/science/article/pii/S0022285214001829
  • Mackenzie, R. B.; Timp, B. A.; Mo, Y.; Leopold, K. R., Effects of a Remote Binding Partner on the Electric Field and Electric Field Gradient at an Atom in a Weakly Bound Trimer. J. Chem. Phys. 2013, 139, 034320. https://aip.scitation.org/doi/10.1063/1.4811198
  • Hunt, S. W.; Shelley, D. L.; Leopold, K. R., Nuclear Hyperfine Structure in the Donor–Acceptor Complexes (CH3)3N–BF3and (CH3)3N–B(CH3)3J. Mol. Spectrosc. 2012, 281, 9–12. https://www.sciencedirect.com/science/article/pii/S0022285212001658
  • Wu, S.; Sedo, G.; Leopold, K. R., Microwave Spectrum of the OD–OH2 Complex: A Strong Deuterium Isotope Effect on Angular Momentum Quenching in the Hydroxyl Moiety. J. Mol. Spectrosc. 2009, 253, 35–40. https://www.sciencedirect.com/science/article/pii/S0022285208002701
  • Brauer, C.S.; Sedo, G.; Dahlke, E.; Wu, S.; Grumstrup, E.M.; Leopold, K.R.; Marshall, M.D.; Leung, H.O.; Truhlar, D.G., Effects of 18O Isotopic Substitution on the Rotational Spectra and Potential Splitting in the OH−OH2 Complex: Improved Measurements for 16OH−16OH2 and 18OH−18OH2, New Measurements for the Mixed Isotopic Forms, and ab Initio Calculations of the 2A´ − 2A´´ Energy Separation. J. Chem. Phys. 2008, 129, 104304-1-11. https://aip.scitation.org/doi/full/10.1063/1.2973638
  • *Sedo, G.; Schultz, J.; Leopold, K.R., Electric Dipole Moment of Sulfuric Acid from Fourier Transform Microwave Spectroscopy. J. Mol. Spectrosc. 2008, 251, 4-8. https://www.sciencedirect.com/science/article/pii/S0022285207002603
  • Ott, M.E.; Craddock, M.B.; Leopold, K.R., Nuclear Quadrupole Coupling Constants for Rare-Isotopic Forms of Nitric Acid. J. Mol. Spectrosc. 2005, 229, 286-289.
  • Brauer, C.S.; Sedo, G.; Grumstrup, E.M.; Leopold, K.R.; Marshall, M.D.; Leung, H.O., Effects of Partially Quenched Orbital Angular Momentum on the Microwave Spectrum and Magnetic Hyperfine Splitting in the OH-Water Complex. Chem. Phys. Lett. 2005, 401, 420-425. https://www.sciencedirect.com/science/article/pii/S0009261404018767

Other Molecules and Complexes